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Summary
The dispersion of the dielectric constant of a glass in the L.F. region
has been investigated. The main relaxation time may be explained
as the reciprocal transition probability of Na+ ions jumping between
adjacent interstices. Extremely high electrode capacities have been
detected, which are frequency and temperature dependent. These
are in qualitative agreement with a simple formula derived for the
dynamic values of double-layer capacities.

Résumé
On a êtudië la dispersion du pouvoir inducteur du verre dans le domain
des basses fréquences. Les temps de relaxation ont été discutés en
eonsidérant la probabilité d'une transition d'un ion Na+, ion qui
saute entre des interstices adjacents. On a observé des valeurs extrê-
mement êlevëes pour la capacité de I'électrode. Cesvaleurs dépendent
de la fréquence et de la température et ils se sont montrées quali-
tativement en concordance avec une formule simple póur la valeur
dynamique de la capacité d'une couche double.

Zusammenfassung
Es wurde die Relaxation der Dielcktrizitätskonstante eines Glascs
im NF-Bercich untersucht. Die Hauptrelaxationszcit kann erkliirt
werden als die reziproke Übergangswahrscheinlichkeit von Na+-
Ionen, die zwischen benachbarten Zwischcnnetzwerkplätzen über-
springen. Dabei wurden schr hohe Elektrodenkapazitäten gefundcn,
wclche frequenz- und tcmperaturabhängig sind. Dicse befinden
sich in qualitativcr Übcreinstimmung mit einer einfachen Formel,
die für die dynarnischen Werte von Doppelschicht-Kapasitäten
abgeleitet wurdc.

1. Introduetion

Much experimental work has been done on the dielectric losses of glasses
at various temperatures and frequencies. It is now assumed that three
sources of dielectric loss may be distinguished.

Firstly: the vibrational losses which are due to the damping of the
vibrations of all ions. These losses will tend to a maximum at the resonance
frequency which will be of the order of 1012 cis and which will be rather
independent of temperature *).

*) In ref. i) an example may be found of a loss vs frequency curve with a resonance peak
at 3.109 c/s which, however, is a rather Iow value caused by the structure ofthe special
glass investigated.
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Secondly: the deformation losses which are of the relaxation rather than
the resonance type. The occurrence of these losses is typical for the
rather loose glass structure in which parts of the network may undergo
deformations caused by the electric field. The relaxation time is rather
short and will strongly. depend upon the temperature. In a number of
cases the maximum of these losses for a given temperature has been
found experimentally 2).
The third contribution to the losses is due to the mobility of the ituliuidual

ions and in particular of the network modifiers, provided they are small
enough to "move" through the glass. It is well known that this mobility
gives rise to electric conductivity and dielectric relaxation as well. It may
seem difficult to indicate experimentally the two essentially different
kinds of displacement involved, for the displacements of mobile ions are
very small, even if D.C. voltage is applied for long periods, providing the
temperature is not too elevated *). But from the dispersion of the dielectric
constant we may still get some insight into the relaxation of at least
part of the mobile ions.•
It is known that the losses of this third group, if measured at room

temperature and at audio frequencies, are far more important than those
of the first and second ty,pes. They increase at decreasing frequencies and at
the same time the dielectric constant increases 3) 4). As far as the authors
know, A.C. measurements of these quant.ities at frequencies lower than,
say, 50 cis have never been published. Such measurements could, however,
be of some interest. In this paper A.C. measurements of e down to 0·1 cis
will be presented.

Related to the relaxation just mentioned there appeal's to be another
remarkable after-~ffect shown by glass condensers and characterized by
exceedingly long relaxation times. As is well known the 'Leyden jar, after
being connected with a battery and being charged, still consumes a con-
siderable "absorption current" persisting for several minutes Ol' longer.
From our measurements at very low frequencies it has become obvious
that this effect may h~represented in terms of a pseudo-capacity at the
surface of the glass condenser. This quantity has been derived from the
experiments and will be discussed in section 5.

2. Experimental procedure; determination of capacitance and resistance,
details of specimens.

The measurements have been taken with the aid ofthe bridge constructed
and described by Köhler and Koops 5). The essential circuit is shown in

*) If during one minute 102 V/cm is applied to a glass with a resistivity as low as
e = ]OB ,Q cm, only 4 monovalent ions per 1000 Az will have passed.



454 J. VOLGER, J. M. STEVELS and C. van AMERONGEN

fig. 1. The sample X is compared with a shunt of a resistor R24 and a
capacitor C24' The resistors R13 and R23 are in general both 104 n, some-
times 104 nand 103 n respectively.
The phase angles and· time constants of these elements are certainly

small enough to ensure reliable results for the impedance X. The specimens
have been provided with an earthed guard ring. When the bridge and the
Wagner earth connections have been balanced the impedance X can be
calculated from the readings.

Fig. 1.Main circuit of measuring bridge.

In most of the experiments the bridge has been fed with a signal pro-
duced by a three-stage RC-oscillator after Van der Mark and Van der
PoIB), which is very suitable for very low frequencies. The diagram of the
oscillator is shown in fig. 2. The angular frequency (()is found to be

1
(JJ = ---;=,
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,-------- -,---------,~ / ~

+ ?JW%'A
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L- ~~~------~~-------------J----o~~
R=tMA C:5000-tOOOOOOpF 77372

Fig. 2. Circuit of RC-oscillator after Van der Mark and Van der Pol. Values of
resistances and cnpacitances in Q and pF respectively.
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in which Rand C are the coupling elements between each of the three
stages. R is about 1 MQ and the C's can be varied in steps from 5000 pF
to 1 fLF.The frequencies obtained have been measured with the help of
a stopwatch or a pulse-counting device. They vary from 0·1 to 20 cis.
Between the oscillator and the input of the bridge a cathode follower and
an amplifier have been placed. In this way voltages of 100 or 200 V on the
bridge may be obtained without unpleasant retroaction on the oscillator,
The detection has been done by means of a standard sensitive galvanom-
eter with a long period. This works satisfactorily even at the highest
frequencies of the range mentioned.

Measurements at higher fréquencies have been taken with the aid of a
standard oscillator for audio frequencies and an amplifier which belong
to the normal equipment of the bridge 5).

Most of the capacitors investigated are cylindrical in shape, the elec-
trodes being metal layers on the inside and the outside. The guard ,rings
used are small strips at both ends of the outside of the cylinders, separated
from the main electrodes, as shown in fig.3. The cylinders have surface
areas of the order of 500 cm'', the thickness of the wall is about 2 mm. Also
discs of about 10 cm in diameter and some millimetres in thickness have
been measured. They have likewise been provided with guard rings.

: • I
I I
I I

: I

lwffL?J7?W?Zl2YL?27fl?4W/H~
_._

77373 ~
Fig. 3. Intersection of glass cylinder with electrodes.

Some capacitors have been investigated without any preventive measures
being taken for the surface conduction at the ends. Our experience has
been, however, that in this case no reproducible results are obtainable.

The measurements at higher temperatures have been carried out with
the capacitor mounted in a furnace, the temperature of which may be
adjusted by hand within one degree centigrade.
Nearly all specimens are of a commercial, well-annealed glass containing

70·6% Si02, 1·4% Al20a, 17'5% Na20, 9·6% CaO, 0·5% MnO and"0·4%
ZnO (mole percentages). This glass will be referred to as A. Some measure-
ments however, have been taken with discs of a glass with a modified com-
position (B). It contains 70·6% Si02, 1·4% Al20a, 27·1% Na20, 0·5% MnO
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and 0·4% ZnO, that is to say, all Ca++ ions of glass A are replaced by Na+
ions', the rest being unchanged.

Various kind of electrodes have been applied, as may be seen in table I.

TABLE I

NI'

x

IU

Electrodes
Marks in the
graphs of

figs 4, 5 and 9

I Silver electredes obtained by reduction of Ag20
at 600°C

Ir Eléctrodes of a Bi-Sn-Cd alloy obtained by
Schoopp process
Silver electrodes, obtained by reduction of an
aqueous solution of Ag salt at room temperature
Gold electrodes obtained by evaporation of Au

+
o

IV
in vacuum

Electrode NI' Ir has the disadvantage that the specimen cannot be heated
higher than about 100°C. One ';nay probably assume that the gold plating
affects the glass to a less degree than do the other processes. Elevation
of temperature within the limits of our experiments has not caused irrevers-
ible changes in the specimens.

3. General survey of results; search for electrode effects

At room temperature all specimens show a slight increase of capacitance
towards lower frequencies and a notable dependency of the resistance upon
frequency. As a consequence the power factor runs gradually from about
0·1 at ill = 100 rad sec-l to 1 at ill = 1 rad sec-I. At higher temperatures
the increase of capacitance at low frequencies becomes more important
whereas the resistivity is almost constant. In fig. 4 a typical example
is given. It must be noted that in this graph the apparent dielectric con-
stant s" is plotted, a quantity derived from the capacitive component
of the measured impedance of the glass condenser and calculated from the
dimensions of the sample as if it were the true dielectric constant of the
glass. This, however, implies that no extra impedance is present at the
electrodes, an assumption which is incorrect, However, the calculated e is
reliable, as will appear from fig. 5.
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. Fig. 5 shows the influence of"the electrodes used upon the measure-
ments, in particular upon the apparent dielectric constant, 8*. The D.e.
resistivity is hardly affected by the nature of the plating, but mainly with
Ag electrodes of type NI' I some deviations in 8* occur, the glass being
most probably spoiled by diffusion of Ag.
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Fig. 4. Apparent dielectric constant (s*) and resistivity (e) as a function of circular fre-
quency at two temperatures. The curves refer to a cylindrical condenser of glass A with
clectrodes Nr I. Cf. also table I.

However, it would be an errorTo'-ëonclude that with Au or any other
chemically inactive plating no electrode effects are pl·esent. This is quite
clear from fig. 6 where the capacities of two gold-covered discs of different
thickness but identical 'preparation are plotted as a function of frequency
(lower part of the figure). The ratio of these values is plotted in the upper
part of fig. 6. The dashed straight line at 1,3, running from about w = 102
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rad sec-1 towards higher frequencies, indicates what might be expected from
the dimensions of the samples under the assumption that the capacitance
is determined by the dielectric only. A close agreement between the ex-
perimental and calculated ratios of Cthin and ethiek exists in.this frequency
range. At the lowest frequencies a remarkable deviation occurs. Here the
ratio should tend towards a limiting value of 2,3, calculated under the
assumption of a high electrode capacitance in a way which will be discussed
in section 5. The experimental values do not yet reach this figure.
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Fig. 5. D.C. resistivity ((?v=o) and apparent dielectric constant at v = I cis (E:~I) as
a function of temperature for different specimens. Cf. also table I.
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Thus an important conclusion results from this analysis, namely that one
must distinguish between bulk and surface properties.

In fig. 6, furthermore, is plotted s, the true dielectric constant of glass
A at 150 oe as a function of the circular frequency. Fortunately at this
relatively high temperature in a certain range of frequencies (not Iow
enough to make the electrode effects appearing) a saturation value of e is
manifested. Although one can never be quite sure in this respect we would
recognize it as the static value, which in this case is about 28. We see e
drop to a much lower value in a range of three or four decades in the fre-
quency, at the end of which the dispersion of e seems to have essentially
finished. In the case under corisideration a value of 11 is reached at 'V =
105 cis. The e(w) curve is flatter than would result from a single Debye
formula. A characteristic or half-value frequency Wc may be noted, which
is here about 6.103 radians second-1•

Similar results have been gained with some other specimens of glass
A and the static e appears to be always about 25. The half-value frequency
Wc is found to be strongly temperature dependent. It must be remarked
that in the frequency range used only above 100 oe can the static s-value
of glass A be indicated with reasonable accuracy (see e.g. e at 21°C in

1.
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Fig. 6. Capacities of thin and thick discs of glass A at 150°C. Also the derived true e
values are plotted and, moreover, the resistivity. From an analysis of the ratio of Cthin
and Cthieksurface effects have been recognized. The discs had surface areas of 31 cm2

and 44 cm" and thicknesses of 1·53mm and 2·80mm respectively.
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fig. 4). On the other hand it would not be wise to heat the glass condenser
above 200 oe in view of possible chemical reactions with the electrodes.
With condensers of glass B it appears that reliable measurements of the

capacitance are very difficult to perform as a consequence of its consider-
ably higher conductance. At 60 oe and 20. oe some results have been ob-
tained, but surface and hulk effects are far too mixed at these temperatures.
Measurements of the resistivity cause no trouble at all.

In the next section particularly the true dielectric constant will be
considered in greater detail, together with the resistivity.

In section 5 the pseudo-capacities at the electrodes, which have been
derived from the measurements, will be discussed.

4. True dielectric constant and resistivity

The temperature dependency of the D.e. resistivity e mflYhe represented
by a fairly straight line in the log e vs liT plot (cf. fig. 5), as has likewise
been found hy numerous other investigators.

Expressing the results with the aid of

E
e = eoo exp kT (eoo = constant, E = activation energy), (1)

we find for glass A eoo = 10-1 ncm 'and E = 0·75 eV. For glass B e
oo
=

2.10-3 ncm, whereas its activation energy E is equally 0·75 cV, a value
that has heen found for a number of glasses of different compositions 7).

We now consider the glass structure somewhat more closely and in partienlar
the mobility of the network modifiers, especially of the Na+ ions. These
ions are situated in interstices of the open network, formed by an irregular
arrangement of tetrahedra of oxygen ions. The presence of each Na+ ion
in the glass requires the presence of a non-bridging oxygen ion, which must
be regarded as a weak spot in the network. It marks, in fact, a place where
a Na'+ ion may rather easily pass from one interstice to another (see fig. 7).
To a first approximation one can say that each non-bridging ion is in
between two interstices which form two equilibrium positions (1 and 2
respectively) for the Na + ion under consideration. If the Na content of
the glass is not too high these "units" are far enough apart for an in-
dividual treatment to be allowed. But in reality this picture is too simple.
The glasses under consideration contain a large number of Na + or other
network-modifying ions. From thè chemical composition it may he calculated
that practically all interstices should be occupied and that on the average
in both glasses there are 3·28 hridging and 0·72 non-bridging oxygen ions
per tetrahedron, so that the network is rather loose, in fact much more
loose than fig. 7 suggests. As a consequence at least a fraction of the Nu+
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ions can move over greater distances. We may characterize the migration
ofthe Na+ ions by a diffusion constant D. This constant is related to d, the
distance between two neighbolU'ing interstices, and A, the transfer prob-
ability for a Na+ ion jumping from the one interstice to the other, by the
following somewhat simplified expression

From the Einstein relation
kT

(! = Ne2D' (3)

where N is the number of mobile ions per unit volume and e their electric
charge, we find for the resistivity of the glass

kT
(! = Ne2d2Á' (4)

For A holds
E

A =:Vo exp --,
kT

(5)

• Si7icon ion

o Br/äging
oxygen ion

o Non-bridging
oxygen ion

• Sodium ion

Fig. 7. Two-dimensional model of a glass containing Na+ ions in moderate concentration.
A typical set of interstices is shown in the lower part of the figure.
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where E is an activation energy equal to the potential barrier between the
interstitial positions. 1'0 is a quantity which is of the order of magnitude
of the vibration frequency of the ions in the matrix, say 1012 or 1013 sec-I.
Inserting (5) into (4) we get

kT E
e = Ne2d2vo exp kT' (6)

This or similar expressions may he derived in different ways of course
[cf. for instance the formula for the conductivity in 7)].

(6) may he identified with the experimental formula (1). Strictly speak-
ing there is an inconsistency in the pre-exponential factor in (6) being
temperature dependent whereas e eo in (1) is not. But in comparison with
the strongly temperature-dependent exponential factor this may be
ignored and for T may be taken an average value of the temperature,
say 400 OK.

The glasses investigated contain a considerable number of Na+ ions.
For glass A N = 9.1021 cm-3 and for glass B N = 1.4.1022 C~3. From
crystallographic considerations d is known to he about 5 Á. If we take
Vo= 3.1012 sec-1 (6) gives a (l agreeing with the experimentally found value
of (lee in the case of glass B, which is the glass containing only Na as a
network modifier.

Obviously in glass A things are different. Here, although an equally loose
network is present, the Na+ ions are limited in their mobility or perhaps
even imprisoned by the immobile network modifiers, especially by Ca++
ions. From the experimental value of e ee for this glass it must be concluded
that only a few per cents of the Na+ ions contribute to the true D.C. con-
duction.

We now apply the model introduced to the discussion of the dielectric
properties.
The e(w) curves (fig. 6) show the existence of a relaxation process in glass,

and in explaining any relaxation phenomenon one has to deal with either
a macroscopie or a molecular (microscopic) theory.

The macroscopie theories are based on an inhomogeneity model of the
substance. Maxwell, and later Wagner, has given a now classical treat-
ment of the effect of certain inhomogeneities on the dielectric constant
and the power factor. The result is a pair of dispersion formulae of what is
now known as the Debye type. In these theories the relaxation times
which govern the relaxation processes are actually RC-constants, depending .
upon the resistivities and the dielectric constants and in general also on
the shape of the constituent substances. For instance in the Maxwell model
of an insulator (dielectric constant e) containing non-interacting con-
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ductive spheres (of resistivity e and dielectric constant B), which occupy a
small volume fraction q of the dielectric, the dielectric constant of the
substance has increased by an amount

(7)

This excess value of B can he understood 8) by considering the spheres as
very strongly polarized systems if an electric field is present. These dipoles
are established, however, by a flow of electric currents, which at higher
frequencies decrease. The relaxation constant l' is here independent of the
radii of the spheres:

l' = 2.7.10-3 Be (1' in sec), (8)

where e is the resistivity of the spheres in.Q cm 8). In the case of well-con-
ducting spheres distributed in a less conducting medium similar formulae
will apply.

In the molecular types of theory, on the other hand, the displacement
of charge is considered not to surpass essentially the interatomie distance,
the effect of an applied electric field being a polarization instead of a
true conduction current. The problem is here to calculate the after-effect
in terms of transfer probabilities of the ions. The static value of B has to
be calculated from the polarizability and the molecular dipoles assumed
to be present in the substance.
. In principle both types of theory seem applicable in our case.
An inhomogeneity model may be justified (a) by considering the proh-

ability that statistical fluctuations of composition and therefore of con-
ductivity may occur in adjacent regions in the interior of the glass;
(b) by the recently published ideas relating to certain frozen-in structures 9)
equally. pointing in this direction; and (c) by keeping in mind that both
the network (as far as it has been kept intact) and the large Ca++ ions may
imprison a certain amount of mobile Na+ ions. It must be remarked, how-
ever, that (7) and (8) cannot be correct in our case beca~se (1) the proper
Maxwell model does not yield D.C. conductivity ofthe glass; (2) if (a) were
not an essential objection, the value of q required for agreement with the
experiment has still to be much too large to make Wagner's formula (7)
hold; (3) the dispersion experimentally found cannot be represented by
one relaxation time. If we nevertheless wish to indentify l' in equation (8)
with the experimental Ijeo.,value, it lies at hand to insert in (8) the value
8~10 and the e values found for glass B (cf. curve eB(T) in fig. 5), as glass
B (which does not contain Ca++ ions) should be similar to the substance
of the hypothetic, well-conducting regions of glass A. However, we then
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do not get agreement at all. Remarkably enough we do get agreement if
QA(T) of glass A is used, which is not very satisfactory.

A molecular theory perhaps is more to the point. In our model some
Na+ ions are bound to stay within isolated, extremely small regions,
consisting of a few interstices only (fig. 7). As a matter of fact this model
can be obtained from the foregoing by reducing the size of the well-con-
ducting regions to such small dimensions that they become too small
to be treated ~s conductors characterized by well-defined macroscopie
quantities.
As the ions in these small systems are able to occupy different positions

they behave essentially as permanent dipoles. Their dipole moment, p,
could for the model in fig. 7 be calculated as t ed, i.e. about 12 Debye
units.

Onsager has derived 10) that for substances with permanent dipoles
under certain conditions

where

Here ês is the static dielectric constant, which we want to consider now.
800 is the dielectric constant of the skeleton; 80= 8'85.10-12 Flm if Giorgi
units are used. Inserting the experimentally found values 8s = 25 and
800. ~ 10 into (9) we find for the concentratien of Na+ ions contributing to
the dielectric constant in glass A

which is only one per cent of the actual amount and of the same order as
the amount of free-moving ions derived from the D.e. conductivity of
glass A.

The relaxation of the dielectric polarization may likewise be explained
with the help of the molecular model. If the transfer probahility for a Na + ion
jumping between the equilibrium positions 1 and 2 in the double-minimum
potentialof fig. 7 is A, and if the local field in the interstices is assumed to be

Eloo = Eo exp jwt

with all dipole axes parallel to the field, common methods for the treat-
ment of relaxation phenomena give for the field-induced deviation (n)
from the statistical occupation numbers (t N in 1 and 2 respectively)



8
85 + 8eo jW7:
1+ jW7:

(11)

DIELECTRIC RELAXATION OF GLASS MEASURED AT LOW FREQUENCIES 465

2n = 1 Np EI
1+ jwj2A kT oc "

(10)

If there were no coupling between n and the local field the quantity lj2A
could be recognized as the relaxation time which determines the after-
effect of the occupation numbers and as a.consequence of the macroscopie
dielectric displacement. A coupling does exist, however, and therefore the
relaxation time r in the well-known dispersion formula

might be somewhat greater than lj2A *).
The value of Wc experimentally found and the quantity A given by

equation (5), agree if we take E = 0·75 eV and "0 = 3.1012 sec-I, which
are very acceptable values and, in fact, the same as have been used for
the discussion of the resistivity (equation (6)). In fig. 8 are shown both
the A curve calculated for these values and some experimental Wc values
(x) for glass A.

150 200 250 300
---T(OC)

Fig. 8. Theoretical values of jump probability A of Na+ ions in glass (full-drawn curve)
and experimentally found values (x) of L.F. relaxation frequency Wc. Cf. fig. 6.

In .an actual glass of course the dispersion of 8 is governed not by Wc

alone, but by a distribution of relaxation times. Of this distribution
usually only the tail is of importance (cf. the analysis of Gevers and
Du Pré 11)). But with our experiments the whole distribution becomes
manifest, including its centre. As appears from our reasoning this main

.) Iff(e.,e",) in (9) may be neglected (Debye), we have

e. + 2 1
7: = e", + 2 2A'

fis 0·55 in our case.
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relaxation time and its temperature dependency can he understood from
a few simple assumptions which equally explain some features of the con- •
ductivity. It is encouraging that also recently published experimental
data on the ionic diffusion 12) 13) and on the elastic relaxation ofglass 14) 15)
are in accordance with the principles of our analysis.

Finally it must be remarked that, as a rule, relaxation processes are
most easily detected by studying the power factor as a function of fre-
quency and temperature. In our case, however, the conductivity of the
substance overrules the dielectric loss almost completely in the ultra-low
frequency range, the power factor being much greater than I. Therefore
full attention is paid to the dispersion of s, which is even more directly
informative.

5. The pseudo-capacity at the electrodes

We now return to the surface effects, the existence of which has been
recognized by examining the capacitances of a thin and a thick disc and
in particular their ratio (fig. 6).

Assuming a surface capacitance Cs (with parallel resistance Rs) in series
with the bulk capacitance Cb (with parallel resistance Rb) and assuming,
furthermore,

one derives with the aid of common A.C. calculus for the apparent parallel
capacity C of the system

whereas the apparent parallel resistance of the system will not exhibit
appreciable dispersion. This feature and (12), predicting the disappearing
of surface effects at sufficiently high frequencies, are in accordance with
the properties found. Ifw2C~R~~1, then Cwill tend towards Cb+l/w2CsR~.
However, Cs and Rs most probably are frequency-dependent quantities for
which wRsCs = I, as will be discussed later. In this case C= Cb +1/2t.o2CsR~,
which is essentially the same result. At low frequencies Cb~ C and the
"calculated value" 2·3 in fig. 6 is in fact the ratio of the values l/CsR~ for
the thin and the thick disc respectively, as derived from their dimensions.

From measurements with a gold-covered cylinder made of glass A
(surface area about 400 cm2) values of Cs have been computed with the
aid of (12) under the assumption w2C~R~ ~ 1. At higher temperatures
the surface capacity per cm2 assumes astonishingly high values which
'vary almost inversely proportionally to -Voo as may be seen in fig. 9.
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These properties make it very improbable that Cs is caused by fixed thin
layers of some insulating material under the electrodes. It seems more
likely that the current itself modifies a little the composition of these
regions.
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Fig. 9. Surface capacity per cm2 of a gold-covered glass condenser derived from measure-
ments at different temperatures and frequencies.

Proposed explanation

We shall assume that the Na+ ions, which are moved by the electric
field, cannot leave the specimen at the electrodes as electrons do and,
moreover, that any interaction with electrons or ions entering from the
.electrodes into the glass may be neglected. We then have to deal with.
modifications of the concentration of Na+ ions near the interface. As a
consequence of the excess concentration (n) a diffusion current flows in
this region. The total current is therefore

on
S = S d + Sdi~= aE - eD -, (13)

COD u . OX

where x is a coordinate perpendicular to the surface and a the conduc-
tivity.
Furthermore we have

oS on
(continuity equation),-= -e- (14)

ox ot
and

oE ne
(Poisson).-=- (15)

ox 808
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If a and D may be treated as constants (small changes in the Na+ con-
centration), it follows from equations (13), (14), and (15) that

n on 02n
-+-=D-,
is .ot ox2

(16)

where is = SoSI! is the "natul'al relaxation time" for the establishment of
a charge distribution, as follows from the basic equations (14) and (15).
It now depends upon the frequency used in the experiments whether

the first or the second term in the left-hand side of (16) predominates.
If on/at may be neglected we deal with what may be called the pseudo-

static case and the well-known formulae for a static double-layer result:

effective thickness of static double-layer = (j(stat) = yDis; (17)

1 a
capacity of static double-layer = cr-» = (t t) - --- (18)

soso s • - -VD/is'

It may he remarked that these expressions may he rewritten in more
common form 16) e.g.

Cs(stat) = VNe2sso
kT

in view of Einstein's equation (3). The capacity Cs in (18), unlike the
experimentally found values of Cs being frequency independent, we feel
that the static formulae do not refer to our experiments.
If, on the other hand, on/at> n/is (i.e.w> I/is) we deal with the dynamic

case. Now, contrary to the static case, the influence of the space charge is
of minor importance and (16) reduces te the normal equation for diffusion
processes

(19)

The applied field being little affected by the space charge we have at the
interface

s= 0, or (on) = aE'= aEosinwt,
ox ",=0 eD eD

which means that at the interface the backward diffusion current a~d the
unperturbed conduction current just balance. From (19) and the known
influx (on/ox)",=o as a boundary condition (20) we find for n

(20)

aEo ~. V-;;;~.~· 1j-;;; ~n = --= exp - x - Sill ost - in - x V-~·
eYDw 2D 2D

(21)
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Mathematically similar problems are met with in the theory of periodic
laminar motion of a viscous fluid and in the theory of heat conduction 17).
Integrating (13) and using (21) we get

co • co VD ( )I Sedx = I Eo sin rotdx - Eo - sin rot - in .
o 0.' ro

From this equation we see that in addition to the normal resistance of
the specimen there exists an impedance of the surface layer. It may be
represented by a surface resistance Rs and a capacitance Cs in parallel,
for which

where c5 is the dynamical value of the thickness of the double-layer (cf.
the exponential in equation (21)). Of course the resulting formula for the
capacitance, viz.

is not correct for ro_,.. O. If co < i-;\ the dynamic value of the thickness
of the double-layer (cf. (21) and (23)) would become greater than the
static value (17) and we then have the pseudo-static case again. Obviously
(18) is the upper limit for the surface capacity.
Earlier treatments of what happens at the interfaces of metal electredes

and ionic conductors (electrolytes) exist 18) 19) 20), and it is well known
that a pseudo-capacity may be related with polarization effects at the
electrodes. However, the application of these concepts to a substance
like glass may be somewhat unexpected. But in the case of our glass, being
an ionic conductor with only one kind of mobile ions, where gold electrodes
have been applied which probably do not interact appreciably with the
glass, it may be justified to have given a simple and direct analysis along
the lines given.

(24) is the right typ-e of formula in view of our experimental Cs values.
A qualitative agreement with respect to the dependency on both frequency
and temperature occurs. A quantitative agreement, however, is only
obtained if, besides the known D values, a values are inserted which are
about 1 or 2% of the values actually found (fig. 5). It must be remarked also
that, strictly speaking, from the actual a values very small relaxation
times is are calculated and that therefore, according to (18), experimen-
tally even a constant value of Cs should have been found in our frequency
range, which is not the case. These effects may be explained by assuming

(22)

(23)

(24)
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a depletion layer at the surface containing less Na + ions. On the other hand,
the assumption of one value of the diffusion constant, regardless of the
distribution function of jump probabilities involved, may be an over-
simplification.
The double-layers are only very thin, as follows from

where d = 5.10-a cm and A is given in fig. 8. If,however, (.();::;A the double-
layer would be too thin and the considerations given no longer valid.

It is easily seen that according to (18) a glass condenser should indeed
be capable of absorbing very slowly large electric charges at the surfaces.
Our A.C. experiments give additional information concerning the nature
of this process. Equally the after-effect of the discharge current and also
the well-known phenomenon of its reversals, induced by the previous
application of suitable reversed voltages, fit into the picture given.
It is an interesting fact that the formation of superficial space charges

in glass recently has been recognized as having much influence upon its
electric breakdown 21).

Eindhoven, May 1953
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